SQL SERVER Indexes
MSBISkills.com

Index — Important Points

1. Anindex is a structure stored on the disk. This structure is called B+,Itegs:
2. An index can only be created on a table or view.

3. They speeds retrieval of rows from the table or view.

4. An index contains keys built from one or more column$ in the table or view.

5. These helps SQL Server to find the row or.rowsassociated with the key values
quickly and efficiently.

6. B+ Trees are used to store indexes inSQL SERVER.

7. B+ Tree structure always ¢ontains at least 2 levels. Root and leaf level. Number of
intermediate levels can.varn

8. Every index will take some space in your database.

9. Index will be modified when DML (Insert, update and delete) operation(s) are
performed. This means reordering B+ Tree occurs every time the index changes

(Updates, Inserts, and Deletes).
10, Index size can be of maximum of 900 bytes.

UPDATE from EXPERT - Kind of. It’s really that the KEY of an index can be 900 bytes OR
16 columns — whichever comes first. But, even that’s not always true. If a table has an XML
column then the PK can have a maximum of 15 columns AND the PK *must* be the CL key.

11. If the table is too small then don't create indexes on it. In this case we will be
wasting our resources because table scan will be faster than index scan.

UPDATE from EXPERT - Every table should have indexes — even small tables. Indexes can
be used to enforce uniqueness and allow for point queries (which do not require index scans).
Having said that, | suppose the only case would be a table that has only one page. But, you
don’t really care about performance for that table anyway (as far as access). What yoymight
care about there is locking. Indexes can be beneficial to allow SQL Server to lock onl\%\

necessary row(s). &
12. You can use ALT + F1 to check out what all indexes are crea@ le.
aba

13. Indexes are a lot of "trial and error" thing depending on d& design, SQL

queries, and database size. &

Types of Indexes $r§%

1. Clustered Index Q(b
2. NonClustered Index®
L

O

Clustered }1@
caxdex sort and store the data rows based on their key values. These are

0. C x‘
Qe) ns included in the index definition.

can have only one clustered index per table. We cannot have more than one
clustered index per table.

2. Because data rows can be sorted in only one order.

3. At leaf level you will get entire data. Means even if you create clustered index on
a single column, at leaf level you will get all the columns means actual data.

9.

Clustered Index will be modified when DML (Insert, update and delete)
operation(s) are performed. This means reordering B+ Tree occurs every time the
index changes (Updates, Inserts, and Deletes). Here physical ordering of the data
changes after each DML operation.

If a table has Clustered Index it is called Clustered Table.

If a table does not contain Clustered Index, then it is stored in Heap. Heap is\an
unordered structure.

Clustered index can be unique or non-unique.

If you create primary key, SQL Internally creates unique ¢lustéred index and
primary key constraint. Primary key is basically a con§traint Used to enforce
uniqueness in a table. The primary key colump$ cannotshold NULL values. Please
check out the example below.

UPDATE from EXPERT - It’s really that the RK'\déefaults to being enforced by a unique
clustered index. None of the columns that'makejup the primary key can allow nulls (or, be
nullable). However, if you have a unique constraint then ALL of the columns that make up the
unique constraint can allow nulls\but "o more than one row can be NULL for all columns. With
a PK NONE of the columns can allow NULL values.

CREATE TABLE Pawan

ID INWY PRIMARY KEY

G0

tesults | [y Messages
Neme Owner Type Created_datetime
[Pawan | dbo usertable 2015-053100:26:56500

Column_name Type Computed Length Prec Scale Nullable TimTraiingBlanks FocedLenNulinSource Collation
iD it no 4 L] no (fa) (n/a) NULL

Identity Seed Increment Not For Replication
NULL

index_nan EEX n index_keys
PK_ Pawan_ 3214EC27486FCB44 | clustered, uniqus, primary key located on PRIMARY | ID

—
Constraint_type constraint_name delete_action update_action status_enabled status_for_replication constraint_keys
PRIMARY KEY (clustered) | PK__Pawan__3214EC27486FCB44 In/a) (n/a) (n/a) (n/a) D

If you just create a unique clustered index, one null value will be allowed in the
table.

10. Note — Do not use GUID as Clustered Index. It will create fragmentation issues.
11. Don't create Clustered Index blindly. It should be created based on the business
need. Try to make Clustered key's size small and if possible integer type. Other

simple rule is column should be somewhat ordered and frequently queried
column. For e.g. EmpID in Employee table.

Also please note that these are just simple tips, there might be scenatiQs where
you to choose different data type or multi column clustered kgy.

So all in all I can say choose wisely.

12. We can create Clustered Index with multiple columns also, These types of indexes
are called Composite Index.

13. The example of clustered index is given below:

--OPTION 1

CREATE TABLE testClusteredIndex

(

ID INT PRIMARY “KEY

,Name VAREHAR(50,)

,0rderStatus BIT --can be 0,1 OR NULL
)
GO

SELECT ID;Name,OrderStatus FROM testClusteredIndex
WHERENID = 1

Output

= Resultsl 3 Messages E'“ Execution plan |

Query 1: Query cost (relative to the batch): 100%
SELECT [ID], [Name], [OrderStatus] FROM [testClustersdIindex] WHERE [ID]=@1

=

Clustered Index Seek (Clustered)
Scanning a particular range of rows from a clustered index.

SELECT

Cost: 0 % Physical Operation Clustered Index Seek
Logical Operation Clustered Index Seek
Actual Execution Mode Row
Estimated Execution Mode Row
Storage RowStore
Actual Number of Rows 0
Actual Number of Batches 0
Estimated Operator Cost 0.0032831 (100%)
Estimated I/O Cost 0.003125
Estimated CPU Cost 0.0001581
Estimated Subtree Cost 0.0032831
Number of Executions L
Estimated Number of Executions 1
Estimated Number of Rows L
Estimated Row Size 418
Actual Rebind 0
Actual Rewinds 0
Ordered True
Node ID 0
Object
[Pawan].[dbo].[testClusteredIndex].
[PK__testClus_ 3214EC2707425C51]
Output List
[Pawan].[dbo].[testClusteredIndex].ID, [Fawan].[dbo].
[testClusteredIndex].Name, [Pawan].[dbo].
[testClusteredIndex].OrderStatus
Seek Predicates
Seek Keys[1]: Prefix: [Pawan].[dbo].[testClusteredIndex].ID =
Sealar Operator{CONVERT_IMPLICIT(int,[@1],0})

--OPTION 2

CREATE TABLE testClusteredIndex

(
ID INT

,Name VARCHAR(50))
,0rderStatus, BIT --can be 0,1 OR NULL

)
GO
CREATE “UNIQUE CLUSTERED INDEX Ix_Cls ON testClusteredIndex(ID)

SELECT, ID,Name,OrderStatus FROM testClusteredIndex
WHEREYNID = 1

Output

,Name VARCHAR(58)
,OrderStatus BIT --can be @ ,Il-‘
) Clustered Index Seek (Clustered) I
GO Scanning a particular range of rows from a clustered index.
Physical Operation Clustered Index Seek
-CREATE UNIQUE CLUSTERED INDEX Ix_ lLegical Operation bk dibmike e
~ Actual Execution Mode Row
Estimated Execution Mode Row
-ISELECT ID,Name,OrderStatus FROM 1 Storage RowStore
WHERE ID = 1 Actual Number of Rows 0
Actual Number of Batches i]
00 - 4 Estimated Operator Cost 0.0032831 (100%)
= Estimated I/0 Cost 0.003125
F{esuhsl I_jj Messages E Execution plan | Estimated CPU Cost 0.0001581
Query 1: Query cost (relative to the ba Eit;m;te:fiii'::i;‘;ﬂ 0'0032331
SELECT [ID1, (Namel, (O it r‘Htimata.ﬂl Number of Executions 1
Iﬂ_ﬁi Eftimated Number of Rows 1
Eftimated Row Size 418
— Clustered) Index Seek (Clustered) ARtual Rebinds]
[testClgsteredIndex] . [Ix Cls] Altual Rewinds 0
Cost: 100 % C‘dered True
Nbde ID 0
Dbject
[Pawan].[dbo].[testClustered Index].[by_Cls]
Output List
[Pawan].[dbo].[testClusteredIndex].ID, [Pawan].[dbo].
[testClusteredIndex].Name, [Pawan].[dbo].
[testClustered Index].OrderStatus —
a Query executed successfully. seek Predicates
Seek Keys[1]: Prefin: [Pawan].[dbo].[testClusteredIndex].ID =
eady Scalar Operator(CONVERT_IMPLICIT(int,[@1],0)) l

14. We can change fill factor while greating Clustered Index. See example below.

CREATE UNIQUE CLUSTERED INDEX Ix_Inx ON Pawan(ID)
WITH (FLLLFACTOR%80)

NomCKRmstered Index

1. A NonClustered index contains index key values and each key value entry has a
row locator.

2. The structure of the row locator depends on whether the data pages are stored in
a heap or a clustered table.

3. For a clustered table, the row locator is the clustered index key.

4. For a heap, a row locator is a RID pointer to the row.
5. NonClustered indexes can be unique or non-unique.

6. Indexes are internally updated after each DML operation (Insert, Update &
Delete).

7. Data is not physically sorted order here.

8. We can have maximum 999 non clustered index per table.

9. A NonClustered index does not affect the ordering afd storing of the data.

10. We can create duplicate NonClustered Indexes‘@bviously with different name but
we should not because indexes will be updated after every DML operation and
we have pay for their maintenance alsosExtra Indexes will lead to CPU and disk

overhead, so craft indexes carefully anditest them thoroughly.

11. The example of NonClustered index is given below.

CREATE TABLE testNon€lusIndexes

(

ID INT

,Name “WARCHAR (50)

sOnderStatus BIT --can be 0,1 OR NULL
)
GO

INSERT INTO testNonClusIndexes VALUES(1, 'Pawan',1),(2, 'Isha',0)
CREATE NONCLUSTERED INDEX Ix _NonCls ON testNonClusIndexes(Name)

SELECT Name FROM testNonClusIndexes
WHERE Name = 'Pawan'

Query 1: Query cost (relative to the batch): 100%
SELECT [Name] FROM [teztNonClusIndexes] WHERE [Hame]=81

#

Index Sesk (Hong
[testlonClusIndexed) [Tx NonCls]
Cost: 1O &

Index Seek (NonClustered)
Scan a particular range of rows from a nonclustered index.

Physical Operation Index Seek
Logical Operation Index Seek
, Actual Execution Mode Row
Estimated Execution Mode Row
Storage RowStare
Actual Number of Rows 1
Actual Number of Batches 0
Estimated Operator Cost 0.0032831 {100%)
Estimated I/0 Cost 0.003125
Estimated CPU Cost 0.0001581
Estimated Subtree Cost 0.0032831
Number of Executions 1
_I Estimated Number of Executions 1
r Estimated Number of Rows 1
- Estimated Row Size 12 B
- Actual Rebinds 0
I Actual Rewinds 0
Ordered True
:Nwem 0
" Object
[Pawan].[dbo].[testMonClusIndexes].[Ix_NonCls]
Qutput List

+ [Pawan].[dbo].[testNonClusIndexes].Mame
Seek Predicates
Seek Keys[1]: Prefix: [Pawan].[dbo].
[testMonClusIndexes].Name = Scalar Operator{[@1])

12. We can change fill factog while creating NonClustered Index. See example below.

CREATE UNTQUE NONCLUSTERED INDEX Ix NonInx WithFillFactor ON
Pawan (IDY WITHJX(FILLFACTOR = 90)

134Even Tyou create a NonClustered primary key, SQL does not allow a single NULL
value."E.g. below

CREATE TABLE Pawan

(
ID INT PRIMARY KEY NONCLUSTERED

INSERT INTO Pawan(ID) VALUES(NULL)

Output

Msg 515, Level 16, State 2,

Cannot insert the value NULL into column

'AdventurelWorks2012.dbo.Pawan'; column does not allow n@

INSERT fails.

The statement has been terminated.

Line 1

"ID', table

N

14. Use NonClustered indexes on foreign Keys that are use S.

N

Clustered Index Vs NonCIuste;q%%dex

QO

Sr.No | Clustered Index \ z NonClustered Index
NN
1 Here data is phys I@ d based Here data is not physically sorted based on
on the Key colu& the key columns
O
2 Here at leaf level you will get Key value and

/P

\
[\
At le Ie\@? will get entire data
\f or all columns. Even if
e clustered index on a single

all the columns will be
llable at leaf level.

row locator. For a clustered table, the row
locator is the clustered index key. For a heap,
a row locator is a RID pointer to the row.

We can have only 1 clustered index
per table

We can have 999 NonClustered index per
table.

Other Index Types

1. NonClustered Index with Included columns

2. Covering Index \

NonClustered Index with Included columx\@
X

1. A NonClustered index can be extended by including nonkey columns in addition
to the index key columns. The nonkey columns are stored at the leaf level of the

index b+ Tree. % \)

2. The general syntax of a Non Clustered Index with Included column is given below

o
CREATE INDEX <IndexName®e> (KeyColumns) INCLUDE

(NonKeyColumns) \

QY

3. KeyColumns - These columns are used for row restriction and processing E.g

they were used in WHERE, JOIN, ORDER BY, GROUP BY etc.

.
N0

4. NonKeyColumns - These columns are used in SELECT and Aggregation. For e.g.

AVG(col) after selection/restriction.

7
ASAR

S\So always choose KeyColumns and NonKeyColumns based on the query

\r‘equirements only.

6. Please note that you cannot add a column in Key column section and a NonKey
column section. It is either a key column or a non-key, included column.

7. A nonkey column will only be stored at the leaf level, however. There are some
benefits of using non-key columns.

Columns can be accessed without extra lookups (RID lookup / Clustered Key
lookup). It will reduce IO operation and improve performance of queries.

Included columns do not count against the 900 byte index key limit enforced by
SQL Server.

Data types not allowed in key columns are allowed in nonkey columns. Allkdata
types but text, ntext, and image are allowed.

Example of NonClustered Index with Included column is given beloyr=

--Create table
CREATE TABLE testNonClusIncludedColsIndexes

(

ID INT

,Name VARCHAR(50)

,0rderStatus BIT --can be 0,1 OR NUBL
)
GO

--Insert some rows
INSERT INTO testNonClusIneludedColsIndexes
VALUES(1, 'Pawan’',1),(2,%Isha,,0)

--Now create a normd nenclustered index
CREATE NONCLUSTEREDy INDEX Ix NonCls ON
testNonClusIncludedColsIndexes(Name)

- -ExecuteN\the™below query

SELECTs\Name OrderStatus FROM testNonClusIncludedColsIndexes
WHERE Name..=> 'Pawan’

--Néw'here you can see that even you have NonClusteredIndex still table scan is
used. Now let's drop the above index and create NonClusteredIndex with
Included column.

DROP INDEX Ix_NonCls ON testNonClusIncludedColsIndexes

CREATE NONCLUSTERED INDEX Ix_NonClsIncluded ON
testNonClusIncludedColsIndexes(Name) INCLUDE(OrderStatus)

Execute the below query and check the execution plan.

--Now execute and check the execution plan
SELECT Name,OrderStatus FROM testNonClusIncludedColsIndexes
WHERE Name = 'Pawan'

Index Seek (NonClustered)
--Now create a normal nonclustered ! gmna particular range of rows from a nonclustered index.

CREATE NOMNCLUSTERED INDEX Ix_NonCI%

Physical Operation Index Seek

Logical Operation Index Seek

--Execute the below query Actual Execution Mode Row
-ISELECT Name,OrderStatus FROM testhoi Esti 1 Execution Mode Row
o ' Storage RowStare

WHERE Name = "Pawan Actual Number of Rows 1
Actual Number of Batches 0

-I--DROP INDEX Ix_MonCls ON testNonCly Esti 1 Operator Cost 0.0032831 (100%)
Estil 11/0 Cost 0.003125

E 1 CPU Cost 0.0001581

--Change the Index to use Included (st | Subtree Cost 0.0032831
00% - 4 Number of Executions 1
] -] . Estil 1 Number of Executions 1

52 | Hesultsl 3 Messages # Executionplan | = Number of Rows 1
Query 1: QueryffC0SC |Iclative Lo CHOE Dateh Eet 1 Row Size 16B
SELECT [Name], [|OrderStatus] FROM [testNcaC Actual Rebind 0
" Actual Rewinds 0

J_ﬁ Ordered True

Node ID 0

Index Seek (NonClustered)

testNonClusIncludedColsIndexes] NII.
Cost: 100 % Object

[Pawan].[dbo].[testNonClusIncluded ColsIndexes].
[¢_NonClsIncluded]
Qutput List
[Pawan].[dbo].[testNonClusIncludedColsIndexes].Name,
[Pawan].[dbo].
[testNonClusIncludedColsIndexes].Order3atus
Seek Predicates
9 Query executed successfully. Seek Keys[1]: Prefix: [Pawan].[dbo].

[testNonClusIncludedColsIndexes].Name = Scalar Operator
@

10. Included columns do not count against the 900 byte index key limit enforced by
SQL Server. Please check out the above example where we have a column in
Include column with size"greaterithan 900 byte.

Covering Index

1. In covering index all columns returned in a query are in the available in the index,
so no additional reads are required to get the data.

2:5A covering index will reduce the IO operations and improve performance of
queries.

3.“Please find the example of covering index below.

CREATE TABLE testCoveringIndexes
(
ID INT
,Name VARCHAR(50)

,0rderStatus BIT -- can be 0,1 OR NULL

)
GO

--Insert some rows
INSERT INTO testCoveringIndexes
VALUES(1, 'Pawan’',1),(2, 'Isha',0),(2, " 'Isha"',0),(2, 'Nisha',1),(2,"'I

sha',0) \
CREATE NONCLUSTERED INDEX Ix_Covering ON
testCoveringIndexes(Name,OrderStatus) Q

SELECT Name,OrderStatus FROM testCoveringIndexe
WHERE Name = 'Isha' AND OrderStatus = © {

Index Seek (NonClustered)
scan a particular range of rows from a nonclustered index.

Physical Operation
Logical Operation

=] Estil d Execution Mode Row
[Storage RowStore
Actual ber of Rows &
Actual ber of b 0
100 %% -_4' Esti d Op Cost 0.0032838 (100%)
= — : Esti 11/0 Cost 0.003125
[Results | 3 Messages & Executionplan | Esti i CPU Cost 0.0001588
Query 1: Query cost (relative to the batc Esti d Subtree Cost 0.0032838
SELECT [Name], [Ozrde ST et ber of Executions 1
Estil d ber of Executions 1
= 5§l Estimated Number of Rows 1.66667
—— Inflex Seek (NonClustered) = :Rlll.w e 168
[testCofleringIndexes] . [Ix Coveriny Actusl g
Cost: 100 & Actual Resid &
Ordered True
Node ID 0
Object
[Pawan].[dbo].[testCoveringIndexes].[Ix_Covering]
Output List
[Pawan].[dbo].[testCoveringIndexes].Name, [Pawan].[dbo].
[testCoveringIndexes].OrderStatus
Seek Predicates
Seek Keys[1]: Prefix: [Pawan].[dbo].
‘@ Query executed successfully. [testCoveringIndexes].Name, [Pawan].[dbo].
[testCoveringIndexes].OrderStatus = Scalar Operator([@1]),
Scalar Operator([@2])

4. Now let's check whether can create index size greater than 900 bytes.
NOTE - yes we can but a warning will come.

CREATE TABLE Pawan

(
ID INT

,Name VARCHAR(100)
,Addre VARCHAR(1000)

)
GO

CREATE UNIQUE NONCLUSTERED INDEX Ix CoveringInx ON
Pawan(Name,Addre)

Warning! The maximum key length is 900 bytes. The indeX
"Ix_CoveringInx' has maximum length of 1100 bytesgs \HOK \sgme
combination of large values, the insert/update opgration will
fail.

Filtered Index

1. If you add a where clausegt@ a NonClustered index it is called Filtered Index.

2. When you createa NonClustered index, you can add a WHERE clause to reduce
the number of rows'that are stored at the leaf level.

3. If we have'fewer rows in an index then less I/O will be used and it will improve
quefy, performance.

4 Also, the size of the index will be smaller since we have fewer rows in the index.
Hence less space will be used by the Index.

5. Filtered indexes are excellent for performance if you have a value that is used in a
where clause very frequently and that value is only a small amount of the total

values for that table.

6. The example of Filtered index is given below.

CREATE TABLE testFilterIndexes
(
ID INT
,Name VARCHAR(50)
,0rderStatus BIT --can be 0,1 OR NULL

)
GO

CREATE NONCLUSTERED INDEX Ix_Filx ON
testFilterIndexes(OrderStatus)
WHERE OrderStatus IN (@ , 1)

SELECT OrderStatus FROM testFilterIndexes
WHERE OrderStatus = © OR OrderStatus =1

Output
]
[e10] Index Seek (NonClustered)
Scan a particular range of rows from a nonclustered index.
-ICREATE NONCLUSTERED INDEX Physical Operation Index Seek
WHERE OrderStatus IN (© , Logical Operation Index Seek
Actual Execution Mode Row
Estimated Execution Mode Row
-ISELECT OrderStatus FROM te Storage RowStore
WHERE OrderStatus = & OF (Actual Number of Rows 0
Wo0% = 4 Actual Number of Batches 0
= : Estimated Operator Cost 0.0032831 {100%)
[Results | 4 Messages 4 Exscution plan | Estimated I/O Cost 0.003125
Query 1: Query cost (relative tc Estimated CPU Cost 0.0001581
SELECT CrderStatus FROM tesuFily Estimated Subtree Cost 0037851
Number of Executions 1
j-fi Estimated Number of Executions 1
Estimated Number of Rows 1
Index Seek (NonClust Fotimated Row Size 3B
[testFilverIndexes]. [I a4 a] Rebinds i
Cost: 100 % Actual Rewinds 1]
Ordered True
Node ID 0
0Object
[Pawan].[dbo].[testFilterIndexes].[Ix_Filx]
Qutput List
[Pawan].[dbo].[testFilterIndexes].OrderStatus
Seek Predicates
B [1] Seek Keys[1]: Prefix: [Pawan].[dba].
@ Query executed successfully. [testFilterIndexes].OrderStatus = Scalar Operator{(0)), [2]

Seek Keys[1]: Prefix: [Fawan].[dba].
[testFilterIndexes].OrderStatus = Scalar Operator{(1))

You cannot use OR in filtered indexes. Please check out the example below.

CREATE NONCLUSTERED INDEX Ix_Filx1l ON
testFilterIndexes(OrderStatus)
WHERE OrderStatus = © OR OrderStatus = 1

Msg 156, Level 15, State 1, Line 2
Incorrect syntax near the keyword 'OR'.

8. Please check out some sample Filtered Indexes below. We can‘tse,AND, IN,
NULL, NOT NULL.

CREATE NONCLUSTERED INDEX Ix_Filx1_©N
testFilterIndexes(OrderStatus)
WHERE OrderStatus = © AND OrderStatus = 1

CREATE NONCLUSTERED INDEX IXx Filx2 ON
testFilterIndexes(OrderStatus)
WHERE OrderStatus INI(NO N1)

CREATE NONCLUSTERED INDEX Ix_Filx3 ON
testFilterIndexes (OrderStatus)
WHERE OrderStatus IS NOT NULL

CREATE\ NONCLUSTERED INDEX Ix_Filx4 ON
testFilterIndexes(OrderStatus)
WHERE OrderStatus IS NULL

9. You cannot use BETWEEN, NOT IN, or a CASE statement with Filtered Indexes.
10. The query optimizer won't use filtered indexes if you're using local variables or
parameterized SQL. Use the way we have used our dynamic parameterized

queries given below.

SELECT OrderStatus FROM testFilterIndexes
WHERE OrderStatus = ©

DECLARE @SQL NVARCHAR(MAX), @OrderStatus INT

SET @OrderStatus = © ®

o

SET @SQL = N' SELECT OrderStatus FROM testFilterIndexes WHERE
OrderStatus =' + CAST(@0OrderStatus AS VARCHAR(10))\®)

EXECUTE sp_executesql @SQL

Final Comment-

&
S

Indexes are very easy to add to your database to improve performance.

However, too much of an indexes can be bad as we have to pay their

maintenance cost. When designing a database, or troubleshooting poor
performing query, consider all your indexes carefully and test them

S
NG
S

W

thoroughly.

